Quantum Communication Applications: Beyond QKD Blind Quantum Computing

Anoop Kumar Pandey

IEEE 6th International Conference on Public Key Infrastructure & its Applications- PKIA 2025

03rd September 2025

Bit

Qubit

$$|\psi\rangle = a|0\rangle + b|$$
1

Pauli Operators

Operator (A)	A 0}	A 1>
I (Identity)	0>	1>
X (Bit Flip)	1>	0}
Y (Bit & Phase Flip)	i 1>	-i 0}
Z (Phase Flip)	0>	- 1>

Matrix Representation

$$|\psi\rangle = \binom{a}{b}$$

$$|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$|\psi\rangle = a \begin{pmatrix} 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

 $\langle \psi | = (a^* \ b^*)$ (Adjoint or Transpose conjugate)

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$X|0\rangle = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |1\rangle$$

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$X^{\dagger} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^{\dagger} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$XX^{\dagger} = XX = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$$

Important

- $A^{\dagger} = A$ (Hermitian)
- $A^{\dagger}A = AA^{\dagger} = I$ (Unitary)
- $A^2 = I$

Blind Quantum Computing

Goal

$$X \rightarrow X'$$

$$x' \rightarrow f(x')$$

$$f(x') \rightarrow f(x)$$

Final:
$$x \rightarrow f(x)$$

Note: x' → x

Problem Statement

Problem Statement

Client with the ability to person (I, X, Y, Z) Server with Universal Operator Capabilities Goal:

- Hide Input States
- 2. Hide Quantum Operation

Masking Input

For Client: Randomly flip the input state as follows:

- Generate a random bit: r(0/1)
 - Must be uniformly random
 - Must be kept secret
- Apply $X^r|0\rangle$
 - r = 0, Send $|0\rangle$
 - r = 1, Send $|1\rangle$

For Server: Indistinguishable random state

Unmasking Input

$f(x') \longrightarrow f(x)$ $A^{\dagger} = A$ $A^{\dagger}A = AA^{\dagger} = A^2 = I$

Consider the following

- Client Input: $|\psi\rangle$ and Intended Operation C $|\psi\rangle$
- Masked Input: σ |ψ⟩
- Server Operation: Clifford Operation (unitary) [E.g. H, CNOT]
 - $\sigma' = C\sigma C^{\dagger}$ (transforms one Pauli to another Pauli: σ conjugated by C)
 - $C^{\dagger}C = C C^{\dagger} = I$
- After Server Operation, State = $C \sigma |\psi\rangle$
- At Client side: Let's apply a transformation $\sigma' = C\sigma C^{\dagger}$

$$C\sigma C^{\dagger}C \sigma |\psi\rangle = C \sigma \sigma |\psi\rangle = C \sigma^{2} |\psi\rangle = C |\psi\rangle$$

Unmasking Input

Server Operation: Non-Clifford Operation

$$T = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\pi/4} \end{pmatrix}$$

- State after Server Operation: $T \sigma | \psi \rangle$
- Case 1: σ commutes with T; i.e. $T \sigma |\psi\rangle = \sigma T |\psi\rangle$
 - Use $\sigma' = \sigma$ such that

$$\sigma' T \sigma |\psi\rangle = \sigma T \sigma |\psi\rangle = \sigma \sigma T |\psi\rangle = \sigma^2 T |\psi\rangle = T |\psi\rangle$$

$$f(x') \longrightarrow f(x)$$

 $A^{\dagger} = A$
 $A^{\dagger}A = A A^{\dagger} = A^{2} = I$

Unmasking Input

$$f(x') \longrightarrow f(x)$$

 $A^{\dagger} = A$
 $A^{\dagger}A = A A^{\dagger} = A^{2} = I$

- Case 2: σ doesn't commute with T (Happens when σ has X or Y)
 - After Server operation, State T $\sigma | \psi \rangle$
 - Client again applies σ and sends it (σ T σ $|\psi\rangle$) to the server to apply the S gate
 - $S = T^2 = TT$
 - SoT $\sigma |\psi\rangle = TT\sigma T\sigma |\psi\rangle = aT |\psi\rangle$ since $(T\sigma)^2 = aI$. Here a is a scalar
- Problem: If we ask server to apply T after the S, server will know that σ contains X or Y
- Resolution: After every T ask to apply S, but in case of Z, apply S to some random qubit (ancilla)

Masking Operation

- Server knows the set of operations to be performed
 - $U = U_1 U_2 \dots \dots U_n$
- Client can apply the fixed set of gates like {H, CNOT, T, S} in the same order
 - Apply the undesired states to ancillas

Conclusion

- Server blindness is achieved
 - Input and Operations are masked
 - Desired Operation is obtained through decoding server output
- But
 - It doesn't guarantee data integrity
 - What if the server is not applying the asked operations

Thank you

anoop@cdac.in pki@cdac.in

@pkiindia