

Generation of PKI and its Applications

Rajesh Murthy, GapAsk

Michael Shea, Aeolian Group

IEEE \UL 2933 Working Group

Advanced technologies enable digital transformation ... and can increase RISK

Signals of a Risky Digital Future

- Since 2017, Pacemakers, insulin pumps, and implantable defibrillators found with critical vulnerabilities, sometimes allowing attackers to **change** device settings remotely.
- HVAC controllers in hospitals, infusion pumps, and medication dispensing systems exploited to disrupt patient care or access sensitive data.
- In 2024–25, over **162 unique vulnerabilities** have been cataloged in medical devices, including DICOM imaging systems, patient monitors, and information systems—many not patchable and widely exposed.
- Almost 22% of healthcare organizations have had medical devices compromised, often leading to service downtime, manual backups, and patient transfers for safety.

2025: Hitting Closer to Home

- Coinbase Breach (May 2025)
 - Improperly managed digital identities and privileged access granted to overseas contractors, affecting nearly 70,000 users
- SharePoint Zero-Day (July 2025):
 - A critical zero-day vulnerability (CVE-2025-53770) in Microsoft SharePoint Server was exploited in a large-scale campaign, with attackers bypassing key protection and trust controls

https://www.cisa.gov/known-exploited-vulnerabilities-catalog
https://www.mcafee.com/blogs/tips-tricks/how-to-protect-your-crypto-after-the-coinbase-breach/
https://canadiancybersecuritynetwork.com/hubfs/CS-Report-CCN-2025-All-v10.pdf

Rise of Digital Spaces

TIPPSS – Security from Human-Centric Lens

Trust

Ensuring reliable, authentic interactions

between systems and stakeholders

Identity

Verified Authentication and

Authorization across the ecosystem

Privacy

Securing sensitive data and respecting

subject confidentiality

Protection

Safeguarding integrity of systems and

data throughout its lifecycle

Safety

Preventing harm to people and

property while maintaining operational

validity

Security

Assuring robust technical controls

against threats

Life Cycle (Simplified)

Sample content: IEEE 2933-2024: Trust & identity interactions of people, organizations, and devices in the CIoT Hospital @Home use case

PSM - Patient Status Monitor PSA - Patient Surveillance Application

Sample Use Case: Hospital @Home

Deployment View of TIPPSS Architecture for Hospital @Home

IEEE/UL P2933 Clinical IoT Example Reference Architecture

- Context system environment
- Technology the physical and virtual devices
- Application Services supports the HWS and EUS
- HWS captures and communicates patient information
- · EUS services to end-users
- SQIRT routes the data and monitors quality
- IA guides all data operations and interoperability
- Governance includes standards, policies, guidelines, etc.

Digital Trust in TIPPSS Framework

TIPPSS Framework	Trust	Digital Trust Angle	Verifiable Sources, Integrity	Enabling PKI & Applications	Certificates, Registrars, Signing
	Identity		Resource Access: Who /What /When /How		Digital Certs, IID, DID, FID
	Privacy		User /Usage /Data Controls		Encryption, Consent
	Protection		Robustness Against Misuse, Tampering		Signed Code, Revocation
	Safety		UX, User Controls, Resilience		Not PKI Specific
	Security		Technical Safeguards		PKI-Based Authentication, Cryptography

TIPPSS & PKI: An Hackathon Perspective

TIPPSS & PKI In Action: Domains

Cybersecurity

Certificate Based User Authentication Signed Software and Container Images Integrity-protected Logs

IIoT /IoMT

Device Onboarding with certificates
Encrypted Telemetry
Certificate Revocation in Mesh Networks

Automotive

Secure OTA Updates (signed by PKI) Vehicle-to-Everything (V2X) Trust Driver Identity and Privacy Controls

Extending the IEEE 2933 TIPPSS Standard to all **Cyber-physical Systems**

IEEE 2933-2024 Approved June 2024

TIPPSS Roadmap Task Group Launched to create new standards opportunities:

- Clinical IoT subdomain Study Groups being formed:
 - Remote Subject Monitoring with TIPPSS
 - AI-Based Coaching for Healthcare with TIPPSS
- Plans to extend TIPPSS to more industry domains:
 - Distributed Energy Resources / Smart Grid
 - Precision Agriculture
 - Connected Vehicles
 - Smart Cities...

View IEEE TIPPSS webinars and register for new ones here: https://engagestandards.ieee.org/gchc-virtualworkshops-register.html

TIPPSS Resources

• IEEE/UL 2933-2024: IEEE/UL Standard for Clinical Internet of Things (IoT) Data and Device Interoperability with TIPPSS--Trust, Identity, Privacy, Protection, Safety, and Security

https://standards.ieee.org/ieee/2933/7592/

Trust, Identity, Privacy, Protection, Safety, and Security (TIPPSS)
 https://nebigdatahub.org/tippss/

Thank you!

Michael Shea (michael.shea@thedinglegroup.com)
Rajesh Murthy (rkrish@ieee.org)